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Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch,

France, and cPhysical Department, Université de
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In macromolecular X-ray crystallography, diffraction data sets

are traditionally characterized by the highest resolution dhigh

of the reflections that they contain. This measure is sensitive to

individual reflections and does not refer to the eventual data

incompleteness and anisotropy; it therefore does not describe

the data well. A physically relevant and robust measure that

provides a universal way to define the ‘actual’ effective

resolution deff of a data set is introduced. This measure is

based on the accurate calculation of the minimum distance

between two immobile point scatterers resolved as separate

peaks in the Fourier map calculated with a given set of

reflections. This measure is applicable to any data set, whether

complete or incomplete. It also allows characterizion of the

anisotropy of diffraction data sets in which deff strongly

depends on the direction. Describing mathematical objects,

the effective resolution deff characterizes the ‘geometry’ of the

set of measured reflections and is irrelevant to the diffraction

intensities. At the same time, the diffraction intensities reflect

the composition of the structure from physical entities: the

atoms. The minimum distance for the atoms typical of a given

structure is a measure that is different from and complemen-

tary to deff; it is also a characteristic that is complementary to

conventional measures of the data-set quality. Following the

previously introduced terms, this value is called the optical

resolution, dopt. The optical resolution as defined here

describes the separation of the atomic images in the ‘ideal’

crystallographic Fourier map that would be calculated if the

exact phases were known. The effective and optical resolution,

as formally introduced in this work, are of general interest,

giving a common ‘ruler’ for all kinds of crystallographic

diffraction data sets.
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1. Introduction

X-ray crystallography is the principal method for obtaining

three-dimensional atomic structures of macromolecules and

their complexes. The method starts with growing crystals of

the macromolecule of interest, which are then exposed to an

X-ray beam. These experimental steps result in diffraction

intensities {Is} measured for a set S of ‘reflections’, i.e. three-

dimensional vectors s = (hkl) with integer indices (hkl). Each

reflection is characterized by its resolution ds = |s|�1 calculated

from its indices and the unit-cell parameters of the crystal.

The larger the indices are, the smaller the value of ds and the

higher the resolution.

The electron-density distribution in the crystal, being a

periodic function, can be presented as a Fourier series, and

the experimental diffraction intensities allow the amplitudes
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{Fs} for the corresponding complex Fourier coefficients

{Fs = Fsexp(i’s)} to be obtained. These are known in

crystallography as ‘structure factors’. Estimation of the asso-

ciated phase values {’s} by one of the phasing methods allows

one to calculate a three-dimensional Fourier synthesis �(r) for

the crystal under study, to present it as corresponding Fourier

maps at various cutoff levels and to then interpret it by

molecular model building.

Larger diffraction data sets give more detailed images and

lead to better models. However, crystal quality, experimental

conditions and experimental noise limit the amount of

diffraction data that can be collected. There are many basic

questions relevant to the choice of diffraction data for analysis

of a given crystal structure, including the following.

(i) Which reflections contain structural information and

‘how much’?

(ii) Which reflections should be used to obtain the most

accurate, most detailed Fourier maps and with the maximum

possible structural information (if the exact phase values are

available)?

(iii) How accurate and detailed would these maps be?

(iv) How accurate and detailed are the particular calculated

Fourier maps?

These well known questions are related to each other and

have some apparent similarity, but in fact they are quite

different and require separate analysis. In particular, while

questions (i)–(iii) can be posed as soon as a set of diffraction

amplitudes is available, the answer to question (iv) depends

not only on the experimental data but also on the phase values

and on the composition of the Fourier coefficients. Also,

accuracy, the level of detail of the Fourier maps in questions

(ii)–(iv) and the amount of structural information which they

contain are different aspects of the problem and, for example,

the choice of the goal may change the answer to question (ii).

Recently, Karplus & Diederichs (2012) have made signifi-

cant progress in answering question (i). In this article, we do

not analyze the accuracy of the data and that of the resulting

maps, but concentrate on the second part of question (iii) of

quantifying a set of selected reflections by the level of detail

in the corresponding Fourier maps. At the same time, our

analysis shows quantitatively that excluding some reflections

from the selected data set can improve the detail of the maps,

explicitly indicating the data to be excluded for this goal; this

partially answers question (ii).

Sets S of selected reflections are traditionally quantified by

their highest resolution, i.e. by the smallest value of ds for the

present reflections: dhigh = min{ds, s 2 S}. In general, a smaller

dhigh indicates that smaller structural details are visible in the

maps. The resolution of the data set may be a limiting para-

meter for a number of crystallographic procedures such as

Fourier map improvement, model building or direct phasing

(see, for example, Sheldrick, 1990; Caliandro et al., 2005a,b

and references therein); therefore, its exact measurement is

important.

Unfortunately, the traditional measure dhigh may change

after the addition or removal of a few reflections with no

apparent change in the synthesis; it does not reflect the

incompleteness of the data set and reveals nothing about its

eventual anisotropy. Therefore, a better quantitative char-

acteristic of diffraction data sets is required. Other traditional

characteristics of diffraction data sets are the overall data

completeness, Coverall, and the data completeness in the

highest resolution shell, Chigh. Weiss (2001) suggested char-

acterizing the ‘true resolution’ of a data set by a semi-

empirical formula that combines dhigh and Coverall.

In this article, we propose a new accurate numerical char-

acteristic showing how detailed the diffraction data set is. This

measure is independent of outliers and reflects the data-set

incompleteness. The same calculations allow characterization

of the data-set anisotropy. Our analysis also illustrates its

difference from and the relation between different meanings

of the term ‘resolution’ used in crystallography.

2. Minimum distance and the interference function

2.1. Minimum distance: generalities

To quantify how detailed a given set of reflections is, some

‘ruler’ is required. The old and natural idea is to look at the

size of the details in the Fourier synthesis calculated with these

data, for example determining

the minimum distance at which two features in the corre-

sponding electron-density map can be resolved

(Weiss, 2001). Similar phrases may be also found in various

crystallographic textbooks; for example, Blundell & Johnson

(1976).

There are several studies that are relevant to the problem of

the minimum distance. To the best of our knowledge, none of

these specify which synthesis (‘electron-density map’) should

be analyzed, while obviously the size of the details depends on

the choice of the Fourier coefficients used.

Concerning the ‘features’, several authors have suggested

looking at the images of scatterers calculated with the given

data set. Electron density for crystallographic scatterers is

described by a function with a positive maximum at their

centre [we leave aside the particular case of artificial scatterers

with negative values such as some IAS (Afonine et al., 2007)

and some other particular situations]. Their Fourier images

also show a central peak, which, however, may be blurred and

surrounded by Fourier ripples, i.e. by auxiliary peaks. When

two scatterers are too close to each other their images merge

and show a single common peak. A minimum distance

between two scatterers exists when their principal peaks are

observed separately in the given Fourier synthesis. Intuitively,

this minimum distance can be used as a ‘ruler’ to describe how

detailed the data set is, but it requires choice of the scatterers

and the way to calculate the ‘minimum distance’ to be speci-

fied.

Each scatterer has an associated size and uncertainty in its

localization. It is clear intuitively that the sharper the scat-

terer, the shorter the minimum distance when two of them

are observed separately in the same Fourier synthesis. The

immobile point scatterer is the sharpest one. James (1948)
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studied its images at a resolution dhigh. He estimated the

minimum distance from the first zero of the image, obtaining

0.715dhigh. Stenkamp & Jensen (1984) discussed some

confusing and contradicting observations and suggested esti-

mating it from the first minimum for a C atom with atomic

displacement factor B = 10 Å2; this resulted in 0.917dhigh. In

fact, there is no strict mathematical reason for the minimum

distance to be equal to the distance either to the first zero or

to the first minimum. Some further discussions about the

separation of images of point scatterers and atoms, although at

relatively high resolutions only, may be found in Altomare et

al. (2008).

Vaguine et al. (1999) proposed another formal procedure

to estimate the minimum distance (implicitly, they analyzed

atoms with the atomic displacement parameter estimated from

the diffraction intensities). Their main idea was based on the

fact that the minimum distance is exactly known for two equal

Gaussian peaks. For this reason, a Gaussian approximation for

several functions involved in calculations was the principal

tool in this approach.

In fact, knowledge of the minimum distance for two

Gaussians is based on a trivial mathematical analysis. For a

function describing the image of two peaks, peak separation

means the presence of a local minimum along the line joining

their centres; in other words, a point with a positive second

derivative of the function. In contrast, when the peaks are

merged such a point does not exist. Checking this condition

provides a universal way to calculate the minimum distance

for any kind of scatterer.

Moreover, one does not need to calculate a series of images

for two equal scatterers at different distances. The critical

situation is when they are exactly at the minimum distance.

This means that a single point exists where the second deri-

vative of the Fourier image is equal to zero. Since the scat-

terers are the same, this point is in the middle between them

and the second derivative is equal to zero for each of them;

this is the inflection point of the image. Therefore, such an

inflection point can be calculated from the Fourier image of a

single scatterer, for example placed at the origin. The

minimum distance is then exactly twice as large as the distance

to this inflection point.

Such an approach does not require any approximations,

only the choice of the corresponding scatterer and calculation

of its image using the diffraction data under study. As shown

below, the image of an immobile point scatterer is fully

described by the set of reflections S = {s} with no measured

intensities required. Therefore, the minimum distance calcu-

lated for point scatterers describes the ‘geometry’ of the

diffraction data set.

The set of available diffraction intensities corresponds to

the atoms of the particular structure. These atoms are the

‘physical entities’ that we are interested in, with their shape

and the uncertainties in their positions, and their analysis is

complementary to that of point scatterers. Owing to the

variety of atoms, some atom ‘typical for the given structure’

will be chosen as another particular type of scatterer for which

the minimum distance is calculated.

In the following, we formally define the minimum distance

and then accurately calculate it for a number of practical

situations. This results in important quantitative and qualita-

tive conclusions and also leads to a procedure applicable in

structural projects.

2.2. Minimum distance for point scatterers

We start from the analysis of an isolated point scatterer, for

which analytic calculations are possible. By definition, when

the corresponding diffraction data are cut at a resolution dhigh,

an image of a point scatterer placed at the origin O of the

coordinate system is described by the function

�ðr; dhighÞ ¼ �ðr; dhighÞ ¼
R

jsj�d�1
high

exp½�2�iðrsÞ� ds

¼
R
s

Uðs; d�1
highÞ exp½�2�iðrsÞ� ds: ð1Þ

Here, r = |r| and U(s; D) is a function equal to one inside a

sphere of a radius D = d�1
high, i.e. for |s| � D, and equal to zero

outside. The spherically symmetric function (1) can be

expressed through the three-dimensional interference func-

tion G3(t),

G3ðtÞ ¼ 3
sinðtÞ � t cosðtÞ

t3
; ð2Þ

as

�ðr; dhighÞ ¼
4�d�3

high

3
G3ð2�rd�1

highÞ

¼
4�d�3

high

3
G3ð2�xÞ with x ¼ rd�1

high ð3Þ
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Figure 1
Three-dimensional interference function. (a) The function G3(2�rd�1) =
G3(2�x) (blue curve) and its first (green) and second (red) derivatives. (b)
Solid lines show the image of two point scatterers, in arbitrary units, at
the resolution dhigh = 1 Å when the distance between them is equal to
0.715dhigh (black), 0.798dhigh (this work; red) or 0.917dhigh (blue). Dashed
curves show the corresponding second derivatives. See text for details.



(Fig. 1a). The function name in (2) refers to that in Rossmann

& Blow (1962) and its index ‘3’ is a reminder that it is calcu-

lated for three-dimensional images. Reminders of some of the

known features of G3(t) and �(r; dhigh) and the derivation of

(3) are given in the Supplementary Material.1

Without a loss of generality, let us consider two point

scatterers on the Ox axis with coordinates x = 0 and x = l,

respectively. Their image calculated at the resolution dhigh and

shown along the interatomic vector (i.e. along Ox) is

�ðr; dhigh; lÞ ¼ �ðr; dhighÞ þ �ðr� l; dhighÞ: ð4Þ

Depending on l and dhigh, the two principal peaks of (4) may

be seen either separately, if l >> dhigh, or be merged into a

single peak, if l << dhigh. More formally, they are seen as

separate peaks if the interval (0, l) contains at least one point

0 < r0 < I where the second derivative of (4) along this

direction is positive, �00(r0; dhigh, l) > 0; they are seen as a single

peak if �00(r; dhigh, l) < 0 for all points in the interval (0, l)

(Fig. 1b). In the intermediate situation �00(r; dhigh, l) < 0 for all

points of the interval except one for which

�00ðr0; dhigh; lminÞ ¼ 0: ð5Þ

This represents a critical condition, determination of which

provides information about the limit for resolving two

neighbouring scatterers, i.e. the value that we are aiming for.

Owing to the symmetry of the problem, this point r0 = l/2

corresponds to the inflection point of both of the composing

images. In other words, the distance from the position of the

scatterer in the origin to the inflection point linfl,� of its image

(equal to r0 in the example above),

�00ðlinfl; �; dhighÞ ¼ 0; ð6Þ

defines the minimum distance between two such scatterers

as lmin = 2linfl,�; the derivative in (6) is calculated along the

interatomic vector. Numerical solution of (6) gives

linfl;� ’ 0:399dhigh ð7Þ

(see Supplementary Material). Therefore,

lmin ¼ 2linfl;� ’ 0:798dhigh ’ 0:8dhigh ð8Þ

with an accuracy that is largely acceptable for practical

calculations. This value differs from 0.715dhigh as obtained

by James (1948), from 0.712dhigh as obtained by Vaguine et al.

(1999) and from 0.917dhigh as obtained by Stenkamp & Jensen

(1984), although formally speaking the last value was not

given for point scatterers. Fig. 1(b) shows, at a resolution

dhigh = 1 Å, the image of two point scatterers at several key

distances, confirming the correctness of the estimate (8).

3. Effective resolutions of a set of reflections

3.1. Effective resolution: definition

In crystallography, when working with periodic electron-

density distributions, the image of a point scatterer at the

origin at a resolution dhigh is calculated as a Fourier series,

�ðrÞ ¼
P
s2S

exp½�2�iðrsÞ�; ð9Þ

and no longer through the Fourier integral (1). Here, the sum

is calculated for a set S of reflections complete at the resolu-

tion dhigh, i.e. such that it contains all reflections with ds � dhigh

or |s| � d�1
high. Except for extreme cases in which too few

reflections are taken, the series (9) calculated with a complete

data set of resolution dhigh coincides with the integral (1) very

precisely. Note that the Fourier synthesis (9) is calculated with

unit Fourier coefficients for the available set of reflections (all

phases are equal to zero).

In practice, the set S is often incomplete at the resolution

dhigh, i.e. some reflections inside the sphere |s| � d�1
high are

missing. In particular, the highest resolution shell often lacks a

significant percentage of the data. One may intuitively expect

(as confirmed in x3.2) that for such a data set the minimum

distance is larger than for a complete data set with the same

dhigh. For the moment, we consider only isotropic data sets for

which the distance to the inflection point is the same in all

directions.

In order to estimate the minimum distance corresponding

to an incomplete data set, we calculate the series (9) and

determine the coordinate linfl,� of its first inflection point in

any direction from the origin. As previously, the minimum

distance is lmin = 2linfl,�. We know from (7) that the same value

of linfl,� would be obtained if a synthesis were calculated with a

complete data set S0 such that

2:5linfl;�ðSÞ > dhighðSÞ S is incomplete

2:5linfl;�ðS0Þ ¼ dhighðS0Þ; S0 is complete

�
; ð10Þ

where linfl,�(S0) = linfl,�(S). Moreover, we know that linfl,� is a

monotonous (linear) function of dhigh for complete data sets,

i.e. that for a complete data set its dhigh is unambiguously

defined by linfl,�. This leads us to a formal definition.

Definition. For a given crystal, let the image (9) of the point

scatterer be calculated with a (isotropic) data set S of reflec-

tions. Let linfl,� be the distance to its inflection point along a

direction from the origin. Let the same distance linfl,� corre-

spond to a data set S0 complete at its highest resolution

dhigh(S0). We say that dhigh(S0) is the effective resolution of the

set S: deff(S) = dhigh(S0).

The term ‘effective resolution’ was adopted following Weiss

(2001). By definition, for a complete set S of reflections the

effective resolution coincides with the highest resolution,

deff(S) = dhigh(S). Knowing (7), one can express the effective

resolution deff directly by the distance to the inflection point as

deffðSÞ ¼ 2:5linfl;�ðSÞ � dhighðSÞ: ð11Þ
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The inequality in (11) follows from (10). The next sections

show that indeed deff(S) > dhigh(S) for incomplete sets and that

the difference between these two values may be significant and

characterizes the degree of incompleteness of S.

In conclusion to this section, we note that the inflection

point can be found by an explicit analysis of the second

derivative of (9) along the chosen direction from the origin (or

any direction if the data are isotropic). However, for complete

data sets it may be also identified from the condition

�ðrinflÞ ’
1
2�ð0Þ ð12Þ

using the corresponding feature of the interference function

G3 (see Supplementary Material).

3.2. Data sets incomplete at high resolution

Figs. 2(a)–2(c) show the results of a test illustrating the

influence of data-set incompleteness on the effective resolu-

tion. A unit cell with parameters a = b = c = 50 Å was taken.

A complete data set was taken at a resolution dhigh = 1 Å; this

particular value was taken purely to simplify the calculations.

Some reflections of this data set were then removed randomly

with a probability p(ds) depending only on their resolution ds.

The probability of removing a reflection was of the form

pðdsÞ ¼

0 if ds > dreduce

d�3
s � d�3

reduce

d�3
high � d�3

reduce

 !m

if dhigh � ds � dreduce

8><
>: : ð13Þ

The scale uniform with d�3 means that if one splits the interval

(dhigh, dreduce) into shells then all of them will contain roughly

the same number of reflections. The parameter m in (13)

defines the rate at which data incompleteness increasess with

resolution. For m = 1 the proportion of removed reflections

increases linearly from the lowest resolution shell,

p(dreduce) = 0, to the highest resolution shell, p(dhigh) = 1.

Values of m > 1 mean a sharper fall in completeness at the

higher resolution, dhigh, and values of m < 1 mean a sharper fall

in completeness at the lower resolution, dreduce, as illustrated

in Fig. 2(c). The overall completeness Coverall is lower for

smaller m (Fig. 2b).

Owing to the isotropy of the removed reflections, the

effective value of the resolution deff (11) was the same for all

three axes, as the calculation confirms. Fig. 2(a) shows deff as

a function of m for dreduce values of 1.2, 1.5 and 2.0 Å. This
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Figure 2
Analysis of data sets that are incomplete at high resolution. (a) Lines without markers show the effective resolution deff = 2.5linfl,� as a function of the
incompleteness parameter m (13) for data sets with high resolution dhigh = 1 Å and that are incomplete in the shell (dhigh, dreduce). The blue curve is for
dreduce = 1.2 Å, the green curve is for dreduce = 1.5 Å and the red curve is for dreduce = 2.0 Å. Larger m values correspond to a sharper fall at higher
resolution. Dashed lines with markers show the resolution estimates dW = dhighC�1/3 from Weiss (2001). (b) Overall completeness Coverall corresponding
to the data sets in (a). (c) Present (in blue) and excluded (in red) reflections corresponding to several data sets from (a) are shown; d in the images stands
for dreduce. (d) l = 0 section of reciprocal space showing present (in blue) and excluded (in red) reflections corresponding to anisotropic data sets. The
white circle in the right image indicates the Ewald sphere for dhigh = 1 Å. (e) Effective resolution deff for PDB entry 4b47 calculated along the a (blue), b
(green) and c (red) coordinate axes for different cutoff values dhigh. The program FOBSCOM (Urzhumtseva & Urzhumtsev, 2011) was used to prepare
(c) and (d).



confirms that deff > dhigh for data sets incomplete at the higher

resolution end and that the difference between these two

values increases with the incompleteness and also depends on

the manner in which the reflections are missing. Fig. 2(a) also

shows the resolution estimates of Weiss (2001) using the

overall completeness Coverall of the data,

dWeiss ¼ dhighC
�1=3
overall: ð14Þ

This estimate is correct for a sharp cutoff level, for which it

was probably derived: dWeiss = deff = dreduce for m = 0. It also

works well, dWeiss’ deff, when the incomplete shell is relatively

narrow, dreduce � 1.2dhigh. However, for larger shells, e.g.

dreduce � 1.5dhigh, and for nontrivial incompleteness, m > 0,

formula (14) significantly underestimates the effective reso-

lution.

For the values of dhigh that differ from 1 Å, equivalent

results may be obtained by changing dreduce proportionally.

The next sections analyze a different situation in which

some reflections are missing not randomly but systematically.

3.3. Anisotropic data sets

If the diffraction data set is anisotropic, its effective reso-

lution may be different in different directions. To simulate

such a situation, a unit cell with parameters a = b = c = 50 Å

was taken as in the previous test and a full set of reflections

s = (hkl) with integer indices was calculated. Several aniso-

tropic data sets shrunk along the a* axis in reciprocal space

were obtained (the directions of a* and a coincide in this

example). To do this, we removed the reflections that did not

satisfy the condition

h2

ða=�Þ2
þ

k2

b2
þ

l2

c2
� 1; ð15Þ

taking various values of � > 1. A value of � = 1 corresponds to

a complete 1 Å resolution data set. Fig. 2(d) shows the l = 0

section for several � values. We also generated several data

sets extended along the a* axis, completing the original set by

reflections satisfying (15) with values � < 1 (right image in

Fig. 2d). For each of these data sets we calculated the function

�(r) (9), which is no longer spherically symmetrical for � 6¼ 1.

For each �(r), we calculated the distance from the origin to its

inflection point along the coordinate axes and then calculated

the effective resolution deff. As one would intuitively expect,

this gave deff = 1 Å for the b and c coordinate axes and deff = �
for the a axis (Table 1). Analysis of the Fourier syntheses

calculated with these sets of Fourier coefficients and with two

scatterers placed varying the distance confirmed (results not

shown) the obtained values of the minimum distance (8).

In the second test, we simulated a different type of aniso-

tropy/incompleteness. We took the same data set complete

at a resolution of 1 Å as above and removed the spherical

segments |h| > a/� for various values of � > 1. Table 1 shows

several interesting observations. Firstly, for these data sets the

conserved reflections somehow interpolate missing diffraction

information along the a* axis, giving a corresponding effective

resolution significantly higher than �. Secondly, such a loss of

data along a* and extending the image of the point scatterer in

the a direction results in some shrinkage in the normal plane,

slightly decreasing the corresponding minimum distance and

improving the effective resolution for the b and c axes.

Obviously, apart from test examples such as that presented

above, the principal directions of anisotropy are a priori

unknown and will be defined first.

3.4. Anisotropy determination

In order to identify and characterize the anisotropy of a set

of reflections, the asymmetry of the central peak of the func-

tion �(r) can be studied. Firstly, we calculate the function (9)

on a three-dimensional grid around the origin. Then, all points

rm = (xm, ym, zm), m = 1, . . . , M with �(r)� �(0)/2 are selected,

referring to relation (12).

In many situations the shape of this set may be well

approximated by an ellipsoid. For such data sets, the

symmetrical matrix calculated over the selected points is

PM
m¼1

xmxm

PM
m¼1

xmym

PM
m¼1

xmzm

PM
m¼1

xmym

PM
m¼1

ymym

PM
m¼1

ymzm

PM
m¼1

xmzm

PM
m¼1

ymzm

PM
m¼1

zmzm

0
BBBBBB@

1
CCCCCCA
: ð16Þ

Matrix (16) always has three real positive eigenvalues 0 < �1�

�2 � �3. The corresponding eigenvectors t1, t2, t3 of (16) are

orthogonal to each other and correspond to the principal

directions of anisotropy. When �1 = �2 = �3 the data set is

isotropic and �(r) is the same for all directions. Otherwise, the

highest and the lowest effective resolution deff will be for t1

and for t3, respectively. The functions �1(r) and �3(r) (9) are

calculated along these directions, defining the respective

distances linfl,min and linfl,max to their inflection points. The

smallest and largest values of the effective resolution are

deff,min = 2.5linfl,min and deff,max = 2.5linfl,max.

In a more general situation, the surface of the selected set

of points is studied (the technical details and corresponding

algorithms will be described elsewhere) and the points with
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Table 1
The effective resolution deff (Å) along the coordinate axes calculated for
different values of the parameter � describing the anisotropy of the data
set along the a axis.

See x3.3 for details. Coverall gives the ratio of the number of reflections in the
data sets to the total number of reflections at a resolution of 1 Å.

Elliptic Segment

� deff, a deff, b, c Coverall deff, a deff, b, c Coverall

0.60 0.60 1.00 1.67 — — —
0.80 0.80 1.00 1.25 — — —
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.20 1.20 1.00 0.81 1.08 0.99 0.96
1.40 1.39 1.00 0.71 1.23 0.98 0.89
1.60 1.59 1.00 0.63 1.36 0.97 0.82
1.80 1.79 1.00 0.56 1.54 0.96 0.74
2.00 1.99 1.00 0.50 1.66 0.95 0.70
2.20 2.19 1.00 0.45 1.87 0.95 0.63
2.40 2.39 1.00 0.41 2.05 0.94 0.58



the smallest and largest distance linfl,min

and linfl,max from the surface point to the

origin define the two extreme effective

resolutions as above. The anisotropy of

the data set can be characterized

numerically by the ratio

Raniso ¼ linfl;min : linfl;max: ð17Þ

x5 below gives several practical exam-

ples of such calculations for isotropic

and anisotropic cases.

xx3.3 and 3.4 show that technically

there is no principal difference in

analyzing anisotropic cases except that

the effective resolution will vary from

one direction to another. Below, for

simplicity we suppose that the data sets

are isotropic unless mentioned expli-

citly. In the next section we analyze

another typical example in which some

diffraction data are systematically

missing.

3.5. Data sets that are incomplete at
low resolution

In practice, most experimental data

sets lack low-resolution reflections:

those below some cutoff level d � dlow.

The value of dlow may vary from 6 to

10 Å (mostly for old data sets) to very large values. It is well

known that excluding such data increases the apparent reso-

lution. The formal definition of the effective resolution, as

introduced here, allows measurement of the practical impact

of such a cutoff on three-dimensional crystallographic synth-

eses.

Indeed, excluding these data modifies the image of a point

scatterer to

�ðrÞ ¼ �ðr; dhighÞ � �ðr; dlowÞ

¼
4�d�3

high

3
G3ð2�rd�1

highÞ �
4�d�3

low

3
G3ð2�rd�1

lowÞ

¼
4�d�3

high

3
G3ð2�rd�1

highÞ �
dhigh

dlow

� �3

G3ð2�rd�1
lowÞ

" #
: ð18Þ

For the dlow/dhigh values usual nowadays in crystallography, e.g.

about 10 or larger, the correcting term in brackets in (18) is

negligibly small (Fig. 3a). As a consequence, the distance to

the inflection point of (18) and the corresponding effective

resolution deff are quite close to those calculated for the

complete data set. For example, for dlow� 4dhigh the difference

between deff and dhigh is below 0.5% and may be neglected

in practice. In fact, even when the correcting term is more

significant its influence on the coordinate of the inflection

point is weak (Fig. 3c). When dcut!dhigh, (18) approaches

cos(2�rdhigh
�1), linfl,�!0.25dhigh and deff!2.5linfl,�= 0.625dhigh.

This transition is very sharp, and even for dlow = 1.001dhigh the

value of deff ’ 0.74dhigh (Fig. 3d).

While such exclusion of low-resolution reflections formally

increases the resolution, it destroys the crystallographic image

(see, for example, Urzhumtsev, 1991) and is counter-

productive. This remark refers to the questions about accu-

racy, level of details and the amount of structural information

in the Fourier syntheses as mentioned in x1.

4. Minimum distance for non-point scatterers

4.1. Atomic structures and B factors

The effective resolution deff defined through the minimum

distance for point scatterers characterizes the set of reflections

S and does not refer to the corresponding intensity values

{Is, s 2 S}. These intensities describe a particular structure

composed from atoms of particular shape and with some

uncertainties in their positions. These uncertainties are

modelled by the atomic displacement factor, also known as the

B factor. In fact, these values characterize not only uncer-

tainties in atomic positions owing to thermal motion but also

statistical uncertainty over the different unit cells in the crystal

and different kinds of experimental errors including those in

the data. A faster decrease in the mean intensity hIsi with

resolution reflects a larger value of the B factor typical for the

structure (Wilson, 1949). The Wilson factor BWilson may be
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Figure 3
Tests with data sets that are incomplete at low resolution. The image of a point scatterer at
dhigh = 1 Å when all data are included is shown in black. Its image at dlow, nonscaled is shown in
green and that scaled by (dhigh/dlow)3 is shown in blue. The resulting image (18) at dhigh = 1 Å when
the data below the resolution dlow are excluded is shown in red. Images are shown for (a) dlow =
4.0 Å, (b) dlow = 2.0 Å and (c) dlow = 1.1 Å. While the image changes significantly in (c), the
coordinate of the inflection point changes much less. (d) Variation of the effective resolution deff

(red curve) shown for dhigh = 1 Å as a function of the low-resolution cutoff dlow (taken on a
logarithmic scale; Urzhumtsev et al., 2009). For reference, the blue curve shows the deff = 1 Å value
when all low-resolution data are present.



referred to as a typical value for the given structure, Btype =

BWilson.

A given structure may contain atoms with different B

values. Owing to atomic shape and positional uncertainties,

the minimum distance for atoms of the structure is larger than

0.8deff for the point scatterers and increases with B. The values

of individual B factors are unknown before the structure is

solved; also, changing B for a couple of atoms will change the

diffraction intensity values only very marginally. Therefore,

calculating the minimum distance for atoms with a particular

B value, for example B close to 0, is not specific for a given set

of intensities and is statistically not representative. In contrast,

the minimum distance calculated for the value Btype, which is

typical for the structure and represents the overall fall of

intensities with resolution, may be a data-set characteristic

complementary to deff. Below, we analyze this characteristic

accurately and show a practical way to calculate it.

4.2. Finite-resolution image of a Gaussian peak

We start from an analysis of artificial structures composed

of isotropic Gaussian scatterers, which is the same as point

scatterers with harmonic uncertainties in their positions

characterized by the parameter B. Fourier coefficients for such

a scatterer placed at the origin obey spherical symmetry and

can be presented as

FðsÞ ¼ FðjsjÞ ¼ FðsÞ ¼ expð� 1
4 Bs2Þ: ð19Þ

The exact shape of the corresponding Gaussian with no

resolution cutoff is then

�G;0ðr; BÞ ¼
4�

B

� �3=2

exp �
1

B
ð2�jrjÞ2

� �
: ð20Þ

It may be noted that its image �G(r; B, dhigh) at a resolution

dhigh,

�Gðr; B;dhighÞ ¼
R

jsj�d�1
high

expð� 1
4 Bs2Þ exp½�2�iðrsÞ� ds

¼
R
jtj�1

exp �
1

4

B

d2
high

t2

 !
exp �2�i

r

dhigh

t

 !" #
dt

d3
high

¼ d�3
high�Gðd

�1
highr; d�2

highB; 1Þ ð21Þ

can be expressed through its image �G(r; B, 1) at resolution

1 Å by linear rescaling. [In (21), an internal variable t = sdhigh

was introduced for integration]. The last formula makes it

sufficient to analyze the Gaussian images only at 1 Å and then

transfer the results to any resolution dhigh by rescaling (21).

Fig. 4(a) shows that at dhigh = 1 Å for relatively small B (up

to 1 Å2) the image of a Gaussian practically coincides with

that of a point scatterer, �(r; dhigh); this happens because the

decrease in the atomic factor (19) owing to harmonic disorder

is insignificant in comparison with a sharp resolution cutoff

(Fig. 4e). Inversely, for B ’ 25–30 Å2 or larger, the image of

(20) practically coincides with itself (Fig. 4d) since the inter-

ference function is very sharp in comparison with the Gaussian

and the resolution cutoff makes practically no contribution

(Fig. 4e). The same result leads to the fact that, for example, an

image of a Gaussian with B = 30 Å2 is practically not affected

by a resolution cutoff higher than 1.2 Å (Fig. 4f). For inter-

mediate B values (Figs. 4b and 4c) the two factors, a sharp
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Figure 4
Fourier images of a Gaussian peak. A Gaussian peak (in green) with B value equal to 1 Å2 (a), 5 Å2 (b), 10 Å2 (c), 20 Å2 (d) and its Fourier image (red) in
the synthesis of a resolution dhigh = 1 Å. The blue curve shows the corresponding interference function. The image of the Gaussian practically coincides
with the interference function in (a) and with the Gaussian itself in (d). (e) Sharp resolution cutoff at dhigh = 1 Å (red) and the function exp(�1

4Bs2)
corresponding to different B values (black for 1 Å2, blue for 5 Å2, green for 10 Å2 and magenta for 20 Å2). (f) Fourier image of a Gaussian with B = 30 Å2

at several resolutions dhigh. For resolutions higher than 1.2 Å the image practically coincides with the peak itself shown in black; the peak is practically
hidden behind the curves for dhigh = 1.0 Å (red) and dhigh = 1.2 Å (green).



Fourier coefficient resolution cutoff and a smooth decay owing

to harmonic disorder (Fig. 4e), interact in a more complicated

way.

Knowing the image of a Gaussian at a given resolution, we

may analyze the corresponding minimum distance.

4.3. Minimum distance for equal Gaussians

Let us consider an artificial crystal structure composed of

Gaussians at positions rn, n = 1, . . . , N and with the same B

values. When no resolution cutoff is applied, linfl,G(B; 0) for

two Gaussians is known analytically (see Supplementary

Material) to be

linfl;GðB; 0Þ ¼
B

8�2

� �1=2

’ 0:1125B1=2: ð22Þ

Fig. 5 is an image of such a structure at resolution deff = dhigh

(let us consider only complete data sets) is calculated as the

Fourier sum,

�ðr; B; dhighÞ ¼
P

s

Fs exp½�2�iðrsÞ�; jsj � d�1
high: ð23Þ

Here, the Fourier coefficients Fs reflect not only the positions

of the scatterers but also their uncertainty as described as

above by B,

Fs ¼
PN
n¼1

expð� 1
4 Bs2Þ expð2�irnsÞ

¼ expð� 1
4 Bs2Þ

PN
n¼1

expð2�irnsÞ: ð24Þ

As previously, the minimum distance for a Gaussian scatterer

is expressed through the distance linfl,G(B; dhigh) from the

centre to the inflection point of its image,

lmin;GðB; dhighÞ ¼ 2linfl;GðB; dhighÞ: ð25Þ

For the data set complete at resolution dhigh = 1 Å, the value of

linfl,G(B; 1) can be calculated numerically; Fig. 5(b) shows it as

a function of B1/2. For dhigh different from 1 Å, the property

(21) leads to

linfl;GðB; dhighÞ ¼ dhighlinfl;Gðd
�2
eff B; 1Þ: ð26Þ

In a general case, the effective geometric resolution deff should

be used in (26) instead of dhigh if eventually incomplete data

sets are used.

As shown above, for large deff
�2B starting from �25 the

resolution cutoff does not play a role, resulting in

linfl;Gðd
�2
eff B; 1Þ ’ linfl;Gðd

�2
eff B; 0Þ: ð27Þ

Inversely, for deff
�2B below approximately 1 the distance to the

inflection point practically coincides with that for point scat-

terers, linfl,G ’ linfl,�. For intermediate B values, which are most

typical for macromolecular structures, the function is more

general, showing that the contributions from the interference

function and from the Gaussian are non-additive, disagreeing

with the basic proposition of Vaguine et al. (1999).

One may expect the situation to be even more complicated

for other scatterers such as atoms.

4.4. Minimum distance for macromolecular atoms

In order to use a similar procedure to study the minimum

distance for atomic structures, we need to address several

features. Firstly, atomic scattering factors (i.e. the Fourier

transform of an isolated atom placed at the origin with B = 0)

can be accurately approximated by a Gaussian function only

at relatively low resolutions of�3 Å or lower (Agarwal, 1978).

Therefore, the results obtained above cannot be used directly

to estimate the minimum distance between two atoms with a

given B value. Secondly, one might expect the distance linfl to

be different for different types of atoms.

In the absence of a resolution cutoff, dhigh = 0, the second

derivative of the atomic electron density can be calculated

analytically using a multi-Gaussian approximation of scat-

tering factors (Brown et al., 2006),

f ðsÞ ¼
P5

j¼1

Cj expð� 1
4 Bjs

2Þ; with B5 ¼ 0: ð28Þ

Let us introduce as previously the distance linfl(B, 0) to the

inflection point of the electron density of some atom with

atomic displacement factor B; the value ‘0’ stands for dhigh = 0.

In spite of the difference in the coefficients in (28) for different

atoms, the distance linfl(B, 0) is fairly similar for the principal

macromolecular atomic types, with the exception of hydrogen.
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Figure 5
Distance to the inflection point of atomic images for different B values.
(a) Distance from the atomic centre to the inflection point of the atomic
electron density; no resolution cutoff was applied. Curves for hydrogen
(light blue), nitrogen (blue), carbon (black) and sulfur (green) are shown.
For comparison, red curves show the distance to the inflection point for a
Gaussian scatterer with B0 = 0 (solid line) and with B0 = 17 Å2 (dashed
line). (b) Normalized distance linfl/deff to the inflection point of the
Fourier image shown, as a function of B1/2/deff, for a Gaussian scatterer
(red) and for a C atom at resolutions deff equal to 0.5 Å (magenta), 1.0 Å
(black) and 2.0 Å (blue). The dashed red line shows the asymptote
(B/8�2)1/2.



The variation is less than 0.01 Å for carbon, oxygen and

nitrogen (except for B values below �0.5 Å2, which do not

exist in practical macromolecular studies), with a maximal

difference of �0.03 Å for some particular values between

carbon and phosphorus or sulfur (Fig. 5a). Similarly, when the

resolution cutoff dhigh was applied (we checked the range from

0.5 to 10 Å), the difference in linfl(B, dhigh) between different

atomic types was very small. For hydrogen, the minimum

distance is larger than for other atoms (Fig. 5a) and is less

characteristic for a crystal. In contrast, a C atom can be

considered as a typical scatterer for our goals and the corre-

sponding minimum distance is studied in the next sections.

4.5. Minimum distance for a C atom

We started by calculating the distance linfl,C(B, deff) to the

inflection point of the images of carbon for different B-factor

values and at different resolutions considering the complete

data sets, deff = dhigh. We referred to (26), which suggests

presenting the distance to the inflection point as a function of

B1/2,

LGðB
1=2
Þ ¼ linfl;GðB; 1Þ: ð29Þ

With (29), the normalized distance

d�1
eff linfl;GðB; deffÞ ¼ linfl;Gðd

�2
eff B; 1Þ ¼ LGðd

�1
eff B1=2

Þ ð30Þ

to the inflection point for Gaussian scatterers is independent

of the resolution when taken as a function of B1/2/deff.

This suggests also analyzing the normalized distance

d�1
eff linfl,C(B; deff) for C atoms as a function of B1/2/deff,

LCðd
�1
eff B1=2; deffÞ ¼ d�1

eff linfl;CðB; deffÞ: ð31Þ

Fig. 5(b) shows that the function (31) resembles (30) but

differs in that it depends on the resolution deff when it varies

from high values up to deff ’ 3 Å. The difference between the

curves may be significant and may reach �0.15 Å/deff. For

large B1/2/deff values the curves for carbon approach the curve

for the Gaussian with B0’ 17 Å2. Therefore, the function (31)

tabulated for several resolutions, say from 0.5 to 3 Å, and

interpolated when necessary allows the minimum distance for

non-H atoms of a macromolecular structure, in particular for

carbon, to be recalculated with any B value and at any reso-

lution deff.

4.6. Optical resolution for a crystal structure: revisited

Obviously, except for some test cases, the atoms of a given

structure have different B values. Defining some ‘typical’

value Btype and associating it with a C atom allows a typical

scatterer to be defined and used as a ‘ruler’ to calculate the

minimum distance which characterizes the set of corre-

sponding intensities. The goal is to perform this a priori and

independently of any particular atomic model built using these

data (i.e. independently of the structure-solution method, of

the phase values etc.).

The set of intensities {Is, s 2 S} defines a particular value of

the Wilson B factor BWilson which may be referred to as a

typical value for the given structure, Btype = BWilson, even when

its accurate definition is sometimes difficult, as mentioned in

particular by Vaguine et al. (1999). Let linfl,C(Btype; deff) be the

distance to the inflection point for C atoms with Btype. The

value 2linfl,C(Btype; deff) defines the minimum distance at which

two such atoms are still seen as separate peaks in the ‘ideal’

synthesis corresponding to the given set of reflections. This

value is similar to the minimum distance for other non-H

atoms with the same Btype. In other words, this is a char-

acteristic value for a synthesis with the Fourier amplitudes

corresponding to the given intensities and with the ideal phase

values {’s}, if they were known. In some way, it shows the

‘potential’ of this set of diffraction intensities.

Previously, Vaguine et al. (1999) discussed ‘the expected

minimum distance between two resolved peaks in the electron

density maps’. Their considerations are essentially based on a

Gaussian approximation of both the atomic shape and the

central peak of the interference function and on the additivity

of the contributions from these two sources to blurring the

atomic images. As we showed in x2.2, approximation of the

central peak of the interference function by a Gaussian leads

to an incorrect estimate of the minimum distance between two

point scatterers. Also, we illustrated ‘non-Gaussian behaviour’

of the distance to the inflection point for the atoms of a

macromolecular structure. All together, this shows that the

idea of additivity of these two contributions is incorrect. These

authors had the very nice idea of using the Patterson peak at

the origin to estimate the B factor for the structure instead of

BWilson. This approach is very promising, but its current

realisation is inaccurate (in particular by also being based on

the ‘Gaussian’ hypothesis discussed above). All of these

inconsistencies may lead to some surprising results when, for

example, the resolution calculated with an incomplete data set

is higher than that for the same data set but complete (see

Fig. 2 of Vaguine et al., 1999).

Considerations of the previous section and in particular (31)

allow an accurate definition and calculation of the minimal

distance for the ‘typical’ (C) atom for the given set of inten-

sities as

lmin;CðBtypeÞ ¼ 2linfl;CðBtype; deffÞ: ð32Þ

Both this work and that of Vaguine et al. (1999) address the

same goal. To avoid introducing new terms and in spite of the

differences between the two approaches and inaccuracies in

the previous definition, we suggest referring to the minimum

distance which we define above (32) as the optical resolution

(Vaguine et al., 1999) dopt = lmin,C(Btype).

Naturally, the particular structure may contain some atoms

with B close to 0 for which the minimum distance is smaller

than (32) and is only slightly larger than 0.8deff for the point

scatterers. However, this shorter distance will be a feature of

this particular structure and not of the set of intensities, which

will not practically change if we replace these two small B

values by larger values, for example by BWilson.
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4.7. The procedure to define the effective and optical
resolutions

Summarizing the results above, this procedure is suggested

to characterize how detailed the set of intensities {Is, s 2 S} is.

This procedure consists of several steps.

(i) The function (9) is calculated along the coordinate axes;

for each of them the distance to the inflection point of (9) is

calculated.

(ii) The maximum of the values calculated in the previous

step is used as an estimate of the radius of the sphere inside

which the function (9) is calculated in a three-dimensional

relatively fine grid.

(iii) All points around the origin such that �(r) � 1
2�(0) are

selected; the points on the surface of this set with the shortest,

linfl,min, and the longest, linfl,max, distance to the origin are

determined.

(iv) The minimum and maximum effective resolutions of

the set of reflections are defined as deff,min = 2.5linfl,min and

deff,max = 2.5linfl,max; the anisotropy factor is calculated as

Raniso = linfl,min:linfl,max.

(v) A value Btype of the B factor typical for the given

structure is defined for the set of intensities; the Wilson factor

BWilson can be taken as such a value.

(vi) The optical resolution (32) is calculated with Btype for

the minimum and maximum effective resolutions.

(vii) Referring to (8), the value dhigh may be compared with

deff to determine the loss of resolution owing to data incom-

pleteness and with 1.25dopt to determine its further loss owing

to the various disorders characterized by the B factor.

The procedure can be applied as soon as a set of intensities

is selected for structure solution. x5 gives several practical

examples of such calculations. We reiterate that this procedure

is not aimed at the selection of intensities from raw data but to

characterize the selected data. Also, this procedure does

not estimate the resolution of particular Fourier syntheses, in

which several other factors play a role, making this a separate

problem and project.

This procedure has been implemented as a command-line

test program which can be obtained by request from the

authors. A GUI version of the program is under development.

5. Application to calculated and experimental data sets

5.1. Test data

To verify the suggested approach, we used the data for the

recently determined crystal structures of translation initiation

factor 2 (IF2; Simonetti et al., 2013) and its complexes. The

crystals were isomorphous to each other but diffracted to

different resolutions and differed from each other in the level

of anisotropy, in the data completeness and in some other

characteristics (Table 2). The crystals belonged to space group

P212121, with unit-cell parameters a ’ 45, b ’ 62, c ’ 160–

162 Å and contained a single protein molecule (fragment

1–363 of IF2) in the asymmetric unit. The crystal packing of

the IF2 molecules showed a large cavity around the origin. The

corresponding atomic models were refined using phenix.refine

(Afonine et al., 2012); the corresponding PDB entries are

4b3x, 4b47 and 4b48. The estimated factor BWilson was very

close to the most frequent B values of the IF2 models as shown

by PHENIX (Adams et al., 2010).

Additionally, several examples of experimental diffraction

data were obtained from the PDB (Bernstein et al., 1977;

Berman et al., 2000) according to the completeness statistic

(P. Afonine, personal communication; Urzhumtseva et al.,

2009; Urzhumtseva & Urzhumtsev, 2011). For one of these

data sets, 1a00, the structure was reported at a resolution of

2 Å while the data set deposited contained reflections with a

resolution up to 1.73 Å; however, the completeness in the

higher resolution shells was very low.

5.2. Effective resolution

Analysis of the effective resolution for several practically

complete data sets showed that the suggested method esti-

mates their effective resolution quite well (Table 2). These

examples also illustrate the accuracy of the practical estimates

as �0.01deff.

For isotropic data sets that are incomplete in the highest

resolution shell the estimated deff is close to dhigh if the shell

is very narrow and relatively complete. It becomes lower

otherwise; for example, it decreased by about�0.1 Å for PDB

entry 1yeq.

For anisotropic data sets the deff,max value may be signifi-

cantly larger than deff,min (see, for example, PDB entries 2whx,

2ntc and 4b47). In most cases deff,min practically coincides with

dhigh even for highly anisotropic data.
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Table 2
Examples of the effective and optical resolutions.

Experimental diffraction data were collected by the authors (PDB entries
4b3x, 4b47 and 4b48; IF2 data) or taken from the PDB. Coverall and Chigh stand
for the data completeness overall and in the highest resolution shell. deff shows
the smallest and largest effective resolutions in different directions; the
anisotropy index Raniso is their ratio as defined in the text. dopt shows the
minimum distances for the C atoms calculated with BWilson. The last column is
given for comparison with dhigh and deff (x4.7). The calculations for PDB entry
1a00 were performed at two different resolutions. The optical resolution for
IF2 was calculated both with isotropic BWilson and with Banisotropic after
addition of the anisotropic corrections obtained after model refinement
[indicated by #; the minimal and maximal values of the correcting coefficients
in (33) are given].

PDB
code

dhigh

(Å) Coverall Chigh deff (Å) Raniso

BWilson

(Banisotropic)
(Å2) dopt (Å)

1.25 �
dopt (Å)

4b3x 1.95 1.00 1.00 1.94/1.94 1.00 29 1.75/1.75 2.19/2.19
4b3x# (�5/+10) 1.72/1.82 2.16/2.28
4b48 2.80 1.00 1.00 2.79/2.79 1.00 68 2.51/2.52 3.14/3.15
4b48# (�27/+14) 2.40/2.59 3.00/3.23
2gc1 1.95 0.91 0.88 1.93/1.93 1.00 26 1.72/1.73 2.15/2.16
1yeq 2.61 0.91 0.32 2.67/2.69 0.99 22 2.24/2.25 2.80/2.82
2wit 3.35 0.91 0.34 3.40/3.58 0.95 64 2.92/3.05 3.65/3.81
3a9y 1.85 0.91 0.88 1.83/1.99 0.92 24 1.64/1.75 2.05/2.19
2whx 2.20 0.89 0.60 2.19/2.48 0.88 21 1.88/2.09 2.35/2.61
2ntc 2.40 0.90 0.60 2.35/2.70 0.87 53 2.17/2.39 2.71/2.99
1a00 2.03 0.94 0.71 2.01/2.22 0.91 22 1.75/1.90 2.19/2.38
1a00 1.73 0.67 0.06 1.73/2.26 0.77 22 1.56/1.94 1.95/2.42
4b47 2.30 0.76 0.50 2.23/3.06 0.73 45 2.04/2.60 2.55/3.26
4b47# (�24/+19) 1.91/2.68 2.44/3.39



The experimental data set for PDB entry 4b47 was analyzed

in more detail. This data set failed to be completed owing to

technical reasons, so that a large continuous region roughly

corresponding to a cone around the a* axis of reciprocal space

was unmeasured. Calculation showed that the effective reso-

lution for the b and c axes was practically the same, with

a marginally better value for the c axis. Naturally, the worst

effective resolution, deff,max, corresponded to the a axis. Two

particular effects were observed.

Firstly, such very strong anisotropy made deff,min slightly

higher than dhigh; a similar effect can also be observed for the

2ntc data (Table 2). Such behaviour has been

discussed in x3.3.

Secondly, removing the highest resolution

shell 2.3–2.7 Å makes the data set less

anisotropic and improves deff,max by more

than 0.1 Å (Fig. 2e). Obviously, this

decreases the deff,min value and for practical

studies syntheses at resolutions of both 2.3

and 2.7 Å can be helpful in such situations.

A similar effect was observed for another

highly anisotropic data set, 1a00.

5.3. Optical resolution: IF2 model data

As a first check, a series of Fourier

syntheses was calculated with the IF2 model

data (PDB entry 4b3x) at various resolu-

tions. Each time, two C atoms with B =

35 Å2 corresponding roughly to BWilson were

artificially added to the model. They were

placed into a cavity in the crystal lattice such

that the contribution of neighbouring atoms

was negligible and no bias from these

neighbours was introduced (Fig. 6a). The

distance d = 2latoms between the added C

atoms varied with a step of 0.1 Å (latoms

varied by 0.05 Å) and the Fourier syntheses

were calculated with the model data for each

such model. Two types of model were

considered: with and without a bulk-solvent

contribution added to the structure factors.

This contribution was calculated using the

flat mask solvent model (Jiang & Brünger,

1994) with scale factors ksolv = 0.31, Bsolv =

31 Å2 as obtained by phenix.refine (Afonine

et al., 2012) for the experimental data.

The Fourier syntheses were calculated

using complete data sets at various resolu-

tions deff = dhigh and were visualized using

PyMOL (DeLano, 2002). Two distances

were noted: a smaller distance when the two

artificial atoms were still seen as a single

peak and a larger distance when the two

peaks were already clearly separated

(Figs. 6b, 6c and 6d). The calculated values,

which were practically independent of the

orientation of the atomic pair in this case of isotropic data,

were compared with the theoretical values linfl,C(B = 35; deff).

Visual analysis of the model without bulk-solvent contri-

bution confirmed the analytical estimates, with errors of the

order of 0.01 Å/deff or below (Table 3). The observed values

did not change significantly when the bulk-solvent contribu-

tion was added; some small changes can be explained by a tiny

variation of the atomic environment in the cavity. This means

that the addition of a special contribution such as that from

the bulk solvent does not change the general scheme devel-

oped for structures composed of individual scatterers.
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Figure 6
Separation of atomic peaks in crystallographic maps. (a) Stereoview of the IF2 intermolecular
cavity with two artificial C atoms (blue spheres) with B = 35 Å2 at a distance d equal to 2 Å;
different molecules are in different colours. (b)–(d) Fourier maps corresponding to these atoms
separated by the distance d given in the figures; the syntheses were calculated with the
complete model data sets at resolutions dhigh equal to 2 Å (b), 3 Å (c) and 5 Å (d). The left
maps correspond to the interatomic distance when the atomic peaks are merged; the right
maps are for the distance when the peaks are observed separately. The peak asymmetry in (d)
is owing to the contribution of neighbouring atoms which becomes significant at this resolution.



The most significant change in the critical interatomic

distance latoms is its decrease at deff = 5 Å by 0.25 Å. This may

include both inaccuracies in the visual analysis and weak

changes in the intermolecular cavity since the contribution

from neighbouring atoms becomes more significant at a longer

distance. This is also consistent with the fact that the low-

resolution bulk-solvent structure factors are similar to those

from the atomic model but have the opposite sign (see, for

example, Urzhumtsev, 2000). This decreases the total struc-

ture-factor amplitudes at resolutions dbulk ’ 6–7 Å or lower

(Phillips, 1980), thus ‘softly’ suppressing them; this may

slightly increase the minimum distance, similar to sharp low-

resolution data suppression (x3.5). The variation is expected to

be more significant for smaller dbulk/deff ratios, as is found to be

the case.

5.4. Optical resolution with experimental data

After verifying the physical significance of the optical

resolution (32) using the IF2 model data, dopt was calculated

for several experimental data sets including those for IF2 and

its complexes. While dopt is a convenient measure to char-

acterize the data set, as was performed in the previous section,

the value 1.25dopt is convenient for comparison with dhigh and

deff. Table 2 shows that for BWilson ’ 20 Å2 the difference

1.25dopt� deff is of the order of 0.2 Å and for BWilson’ 60 Å2 it

may approach 0.3–0.4 Å (for example, PDB entries 2wit and

4b48). For the analyzed isotropic but incomplete data sets the

maximum value of the difference deff� dhigh reached a smaller

value of 0.08 Å. This reflects the fact that the high-resolution

shells of diffraction data are traditionally excluded from

structural analysis if they have low data completeness. Natu-

rally, such a cutoff avoids confusing values of dhigh but leads to

a loss of diffraction information. We believe that these data

could be used for structure analysis independently of their

completeness if they satisfy other selection conditions. This

might eventually improve the results and correctness of the

model, while estimates of the ‘real’ effective resolution deff will

not be influenced by these reflections.

Crystal disorder may be anisotropic, as reflected by the

anisotropic correction to the overall B factor (see, for

example, Afonine et al., 2013). For our example of the IF2

structure such a correction was obtained a posteriori from

model refinement. Here, for all three data sets the principal

anisotropy axis coincided with the mutually orthogonal coor-

dinate axes, reducing the anisotropic scale factor to a simpli-

fied form

Kaniso ¼ exp½�ðBhhh2
þ Bkkk2

þ Blll
2
Þ=4� ð33Þ

convenient for comparison with BWilson.

This diffraction anisotropy is complementary to and

superimposes with the eventual anisotropy of the set of

reflections, as the IF2 examples show (Table 3). Indeed, for

the isotropic data sets 4b3x and 4b48 with different effective

resolution deff and different BWilson values, this correction led

to a significant variation in dopt. It decreased in the c direction

and increased following a compared with the values for the

isotropic BWilson.

For the incomplete and anisotropic set of reflections (4b47)

introduction of the anisotropic correction (33) amplified the

already existing difference between dopt in the a and c direc-

tions.

6. Discussion

The goal of this project was to introduce a strictly defined and

physically meaningful characteristic to compare crystallo-

graphic diffraction data sets that are complete and incomplete.

The suggested approach is based on an accurate calculation

of the minimum distance between two scatterers when their

images are still separated in the synthesis calculated with the

given data set. Obviously the minimum distance depends on

the scatterers, and two particular types are chosen: point

immobile scatterers and C atoms with a B factor typical of the

given structure.

Comparison of the calculated minimum distance for point

scatterers with the theoretical values for the complete data

sets defines the effective resolution deff of a data set. For each

complete data set this value coincides with its highest reso-

lution dhigh, while for incomplete data sets it is larger and

depends on the data-set completeness and on the shape of the

regions in which data are lost. Such a minimum distance

depends on the set of reflections and not on the corresponding

intensities. One may say that deff characterizes the ‘geometry’

of the data set.

For anisotropic sets of reflections deff depends on the

direction in which the minimum distance is calculated. The

ratio of the smallest to the largest of these values gives an

unambiguous numerical characteristic of anisotropy.

A similar analysis of the minimum distance for C atoms is

based on the observation that such a distance depends only

very weakly on the type of atoms composing the macro-

molecules (except hydrogen). This minimum distance, called

the optical resolution dopt following Vaguine et al. (1999), can

be calculated as soon as a diffraction data set is processed. It

does not require the knowledge of an atomic model and can

characterize various data sets in a common way for the same

or for different structures. This characteristic describing how

detailed these data sets are is complementary to the common
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Table 3
The distance (Å) from the peak to the inflection point of a typical
scatterer calculated for different IF2 models at resolution dhigh compared
with the experimentally observed value.

The two values given for a visual analysis correspond to the half-distance
latoms = 1

2d between the two atoms when they are observed to be merged and
when they are clearly separated. See the text for further details.

Theory, B = 35 Å2
Map, visual,
no bulk solvent

Map, visual,
with bulk solvent

dhigh (Å) linfl,C latoms latoms

2 0.90 0.90/0.95 0.95/1.00
3 1.25 1.25/1.35 1.30/1.40
4 1.65 1.65/1.70 1.65/1.70
5 2.10 2.15/2.20 1.90/1.95



characteristics describing the accuracy of the data (Karplus &

Diederichs, 2012, and references therein).

The current approach considers the Wilson factor BWilson

as a typical value for these atoms. As a consequence, the

minimum distance estimate is based on the decrease of the

isotropically averaged intensities with the resolution. In the

future, a more detailed analysis may be developed defining the

typical B values, especially for low-resolution data sets, as

indicated by Vaguine et al. (1999). An accurate estimate of

anisotropic typical B values directly from the set of intensities

and prior to model building may be another important future

development.

We reiterate that this approach works well with experi-

mental data, as x5 illustrates, but it is not aimed at checking

their correctness or that of corresponding syntheses or at

selecting the data. Nevertheless, the method may suggest

removing some higher resolution reflections in order to

improve the expected details in the Fourier maps, as some

examples in the text show.

In the future, the proposed measures may find other

applications apart from use in describing how detailed the

diffraction data sets are. For example, for a given pair of atoms

a minimum distance between them may be estimated using the

same approach. If this minimum distance is shorter than the

actual distance between the atoms, this would mean that the

diffraction data contain sufficient information so that the

stereochemical restraints for these atoms may be omitted

during atomic model refinement. This and other suggestions

may be the subject of a separate project.
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Jiang, J.-S. & Brünger, A. T. (1994). J. Mol. Biol. 243, 100–115.
Karplus, P. A. & Diederichs, K. (2012). Science, 336, 1030–1033.
Phillips, S. E. (1980). J. Mol. Biol. 142, 531–554.
Rossmann, M. G. & Blow, D. M. (1962). Acta Cryst. 15, 24–31.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
Simonetti, A., Marzi, S., Fabbretti, A., Hazemann, I., Jenner, L.,

Urzhumtsev, A., Gualerzi, C. O. & Klaholz, B. P. (2013). Acta Cryst.
D69, 925–933.

Stenkamp, R. E. & Jensen, L. H. (1984). Acta Cryst. A40, 251–254.
Urzhumtsev, A. G. (1991). Acta Cryst. A47, 794–801.
Urzhumtsev, A. (2000). CCP4 Newsl. Protein Crystallogr. 38, 38–49.
Urzhumtsev, A., Afonine, P. V. & Adams, P. D. (2009). Acta Cryst.

D65, 1283–1291.
Urzhumtseva, L., Afonine, P. V., Adams, P. D. & Urzhumtsev, A.

(2009). Acta Cryst. D65, 297–300.
Urzhumtseva, L. & Urzhumtsev, A. (2011). J. Appl. Cryst. 44,

865–872.
Vaguine, A. A., Richelle, J. & Wodak, S. J. (1999). Acta Cryst. D55,

191–205.
Weiss, M. S. (2001). J. Appl. Cryst. 34, 130–135.
Wilson, A. J. C. (1949). Acta Cryst. 2, 318–321.

research papers

1934 Urzhumtseva et al. � Effective and optical resolutions of diffraction data sets Acta Cryst. (2013). D69, 1921–1934

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lv5042&bbid=BB29

